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By means of a simple model it is shown thdt two measures 

of damping in a spinning flexible spacecraft behave differently as 

spacecraft flexibility is varied; the two measures of damping are 

the time constant and rms response to random crew excitation. 

The way in which crew excitation is prescribed, that is, as forces 

or as motions, is found to have considerable influence on how 

response varies with flexibility. 

Difference in behavior between time constant'and rms 

response was observed in preparation of the parent memorandum,* 

and the present memorandum provides documentation of work done 

at that time to understand the phenomenon. 

*TM-71-1022-2, "Structural Wobble Damping o 

I 
Skylab," by P. G. Smith. 
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The work reported herein was performed in conjunction 
with.a parent study (Ref. 1) in order to obtain insight into the 
findings of that study. The findings are that two measures of 
system damping, namely time constant and rms response to random 
excitation,* behave differently as parameters, such as flexibility, 
of a spinning flexible spacecraft are varied. Specifically, it is 
shown that as appendage stiffness is increased, the time constant 
increases while the rms response decreases. The complexity of the 
dynamical model used in Ref. 1 obscures an understanding of these 
relationships, so a simple model is used here. 

The sequel is organized as follows: The model is 
described and its equations of motion are given. Approximate 
formulas are obtained for the time constant and the rms response 
to random crew motion. Finally, results from the formulas are 
compared with results obtained from the computer program used 
in Ref. 1, and a discussion of the results follows. 

Model and Equations of Motion 

As shown in Figure 1, the model comprises three bodies, 
Relative to 3 '  a main body B1, and appendage B2, and a crewman B 

B1, B2 is allowed oiily r o t a t i o n  about X and I3 

rotation about Y, the associated angles being 8 and 4, respectively. 
B1 and B are symmetrical about the spin axis Z, B is inertially 

is allowed only 3 

2 3 

*Both are measures of damping in the sense that they vary 
inversely with the amount of damping in the system. 
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s p h e r i c a l ,  and a 

F igure  1 

The Dynamical Model 

t h r e e  bodies  have a common m a s s  c e n t e r .  
B1 and B and J2 and t r a n s -  

v e r s e  moments of i n e r t i a  Il and I C 2 ,  B3 has moment of i n e r t i a  

L,  s2 i s  t h e  s p i n  speed, and B1 and B2 are connected by a s p r i n g  

of c o n s t a n t  k and a dashpot  of c o n s t a n t  c. 

have a x i a l  moments of i n e r t i a  J 2 1 

If wX, w w are  t h e  angu la r  r a t e s  of B1, f o u r  dynamical 
Y '  z 

w y ,  z ,  e q u a t i o n s  can  be  w r i t t e n  i n  t h e  f o u r  unknown v a r i a b l e s  w x I  w 

and e .  (+  i s  a p r e s c r i b e d  func t ion  of t i m e  and hence n o t  an  
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unknown.) 
the equations in wlt wz1 w31 O r  and $.  

equations is w = 0, and it is dropped from further consideration. 
The remaining equations may be written in dimensionless form as 
follows . 

Let w = W1' w 
X Y 

= w21 and w z  = R + w3' and linearize 
One of the linearized 

3 

1 11 1 

u - K1U2 + K2U3 - K3U3 = II$ 1 

1 1 I1 

Klul + G2 i (K +K ) U = - i$  2 3  3 

I1 1 ' K3 u + u  + a u  + ( w  2 --)u K3 = o  
3 3 K2 3 u - -  1 K2 2 

where 

I1 - J1 + I2 - J2 
- 

K1 - I1 + I2 + L  

L - - 
K2 I1 + I2 + L  

I.. - J, - L L - 
K3 I, + I, + L 

L I I =  I1 + I2 + L 

L 
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The independent variable in (1) - ( 3 )  is T = fit, and primes 
denote differentiation with respect to T. 

be thought of as a dimensionless appendage stiffness, or 
alternatively, o may be thought of as the appendage natural 
frequency.* 

The parameter w 2 , which is of prime interest, may 

Configuration of Interest 

The phenomenon under investigation seems to be related 
to the spacecraft configuration. 
configuration studied has the following characteristics: 

The Skylab artificial gravity 

without ballast booms B2 the spin axis is not the axis 
of maximum moment of inertia, 

with booms the composite vehicle does spin about its 
axis of maximum moment of inertia, 

the boom inertias are as small as practicable, 

the crewman B3 is much smaller than either the main 
body B1 or the booms B2. 

and 

Analytically, these characteristics are expressed 
as follows: 

J2 = 212 

Now the inertia parameters K1, K2, K 
terms of the single parameter q. 

can all be expressed in 3 

* W  is analogous to the oB of Ref. 1. 
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-3 - 
K2 l+q 

=-2q 
K3 l+q 

We are interested in the sitiiation where q<:l. 

Time Constant 

The fourth-order system (1) - ( 3 )  possesses four 
eigenvalues, a complex pair associated with the appendage 
vibrations and a complex pair associated with the wobble 
motion of the main body. Time constant shall denote the 
negative reciprocal of real part of the wobble motion eigen- 
values. * 

The characteristic equation of (1) - (3) is 

c s 4  + c s3 + c , 2 +  c s + c = 0 0 1 2 3 4 

where, by use of ( 4 )  - (61,  

c -  -l-q 
0 l+q 

c = a  1 

3 2 c =  w -  + (1-q) 2 

2 c3 = aq 

( 4 )  

(5 )  

( 7 )  

*This definition is consistent with the one used in Ref. 1. 
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Because a < < l ,  approximate analytical expressions 
are available for the roots of (7) (see Appendix), and the 
time constant is approximately 

U 

-1/2 T =  
c1 - Ic1c2 - 2c31 (c; - 4c c ) 0 4  

Wher, q<<l, (8) yields 

2 
(w2 + 1) T =  

RMS ResPonse 

We wish to find the rms response of (1) - (3) when 
$(t) (the crew motion) is a random process obtained by passing 
white noise through a linear filter of the form 

2 
P 

H ( s )  = 2 2 
&(S + Y ) ( S  + 25ps + p ) + 

For the system under consideration p is much larger than any of 
the other system frequencies, so it is sufficient to use 

1 
$ = a ( s  + y) 

The required outputs are the Euler angle rotations 
relative to a spinning reference frame. 9, and 0 

kinematical equations are 

The linearized 
Y 
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O r d i n a r i l y ,  (111, ( 1 2 )  would b e  combined w i t h  (1) - ( 3 )  and 
t h e  r e s u l t i n g  system would be so lved  a s  a whole. The e x t r a  
l a b o r  a s s o c i a t e d  wi th  s o l v i n g  t h e  combined problem i s  so 
g r e a t ,  however, t h a t  an  approximate method of handl ing  (11) 
and ( 1 2 )  i s  more a t t r a c t i v e .  The method i s  based on t h e  
assumption t h a t  e i t h e r  t h e  f i r s t  t e r m s  or t h e  second t e r m s  
on t h e  r i g h t  hand s i d e  of (11) - ( 1 2 )  are  dominant and t h a t  
t h e  nondominant ones may be neglec ted .  By s o l v i n g  t h e  problem 
bo th  ways it has been found t h a t  t h e  second t e r m s  i n  (11) - 
( 1 2 )  are dominant, so  w e  hencefor th  use  t h e  k i n e m a t i c a l  
e q u a t i o n s  

Another approximation i s  i n  o r d e r .  I n  t h e  cour se  

X Y 

of g e n e r a t i n g  d a t a  f o r  Ref. 1 it was observed t h a t  t h e  r m s  
v a l u e  of $ was l a r g e r  t h a n  t h a t  of $ . R a t h e r  than  compute 
r m s  v a l u e s  f o r  bo th  $x and $ and r o o t  sum squa re  them, it i s  

a p p r o p r i a t e  then  t o  work w i t h  j u s t  t h e  r m s  v a l u e  of $ which 

w e  d e n o t e  $rms. 

Y 
X I  

When ( 1 0 )  and (13) a r e  combined wi th  t h e  Laplace 
t r ans fo rm of (1) - ( 3 ) ,  t h e r e  r e s u l t s  a t r a n s f e r  f u n c t i o n  
H$(s), which when d r i v e n  by w h i t e  n o i s e  y i e l d s  t h e  p rocess  

$x ( s )  

5 4 2 
5 nos  + nls  + n s3 + n s + n 4 s  + n 

c A 
2 3 

H ( s )  = 9 0 dOsJ  + d l s4  + d 2 s J  + d3s L + d 4 s  + d5 

T h i s  i s  n o t  a s a t i s f a c t o r y  t r a n s f e r  f u n c t i o n  because t h e  
numerator is of t h e  same order  a s  t h e  denominator,* a c o n d i t i o n  
t h a t  arises because of t h e  denominator f a c t o r  t h a t  was dropped 

* In  o r d e r  t o  o b t a i n  bounded mean squa re  response  t h e  numerator 
must be of lower order t h a n  t h e  denominator.  
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in arriving at (10). The situation can be rectified by 
dropping the relatively small n s5 term from the numerator; 
for convenience, the nls 
also be dropped. Thus, 

0 4 term, which is also small, will 

3 2 
5 n s + n3s + n4s + n 2 

H@(s) = dos + d l s 4  + d2s 3 + d3s 2 + d4s + d5 

 he coefficients are 

+ 1 + q (-)I 2 n2 = - [ w  
l+q 

"3 = "9 

n = q(w2 + 1) 4 

n = O  5 

1 -n 3 
d4 = q 2 [ a y  + w -  - iG) j 
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The mean square value of $x is 

Ref. 2 gives the value of the integral: 

b (-a a +a a ) + b2(a a -a a ) + b3(-aoa3+ala2) 
(17) 2 -  1 2 5  3 4  0 5  1 4  - 

-a a )(-a a +a a ) ]  'rms 2 
2 [ (a0a5-ala4) + (a2a5 3 4 0 3  1 2  

where 

a =d a =d 1I a2=-d2' a3=-d a =d a =d 0 0' 

b =n 1 2 '  2 3 24' 3 4 

3' 4 4 '  5 5 

2 b =n 2 b =n -2n n 2 

A Routh-Hurwitz stability analysis of characteristic 
equation (7) gives rise to the stability condition 

Therefore, we are interested in reducing (17) to a simpler 
0 formula valid when w L is on the order of 10 and a r y I q  are 

all small compared to unity. Such a formula is 

2 3  
2 -  - ( w  +1> 
'rms 4a[q2(w2-1+2q) + y 2 2  ( w  +1)1 

(19) 
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Discussion 

Approximate formulas (9) and (19) give the time 
constant and rms response, respectively, for a simple model 
of a spinning flexible spacecraft. The formulas are plotted 

and for two values of y, and y = 1 0 m 3 .  Observe that 
for Y = ~ O - ~  and small values of w 2  (appendage stiffness), the 
phenomenon of interest does occur, namely, the rms response 
decreases as the time constant increases. 

in Figures 2 and 3 ,  respectively, (solid lines) for c r = q = l O  - 2  

The dashed lines in Figures 2 and 3 are obtained 
from the computer program written in connection with Ref. 1. 
The program input is chosen to represent what seem to be the 
essential characteristics of the simple model. A s  can be 
seen from the figures, agreement between the models is good 
in regard to the time constant and the y=10 response, and 
the Y = ~ O - ~  response agreement is satisfactory , taking into 
account the essential differences between the models and the 
approximations on which (19) is based. 

-2 

The difference in behavior between Figures 2 and 3 
seems to be due to the way in which the crew excitation is 
prescribed. Clearly, crew motion parameter y is important, 
for when y=10 both time constant and rms response increase -2  
monotonically with w 2 . 

The form in which crew excitation is applied is also 
important. Crew disturbance data are given in terms of forces 
and moments applied to the spacecraft by the crewman (Tief. 3 ) .  
In Ref. 1, however, the crew disturbance data are divided by the 
crewman's inertia and integrated twice to give crew motions, 
and it is crew motions rather than forces and moments that 
constitute the crew disturbances. In order to keep the two 
models similar, the simple model treated here is handled in the 
same way. But the simple model has also been tried with prescribed 
crew moments rather than the crew motions $(t), and with prescribed 
crew moments the response increases monotonically with w . The 
difference in the two approaches is manifested in the term on the 
right hand side of (1) that is present when crew motion is prescribed 
but absent when crew moment is prescribed. 

2 
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RMS Response vs. Appendage Stiffness 
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The question arises as to whether it is more realistic 
to prescribe crew motions or crew moments. For a spacecraft 
whose gross motion is negligible (such as an inertially oriented 
spacecraft) the two approaches are essentially the same. For the 
Skylab artificial gravity configuration, the inertia forces 
induced by the spacecraft's spin will, in the writer's opinion, 
be sufficiently small that a crewman will be able to carry out 
his desired motions in performing specific tasks, the same motions 
he would have performed had the spacecraft not been spinning. In 
this case, motions rather than moments should be prescribed. Only 
when inertia forces become so large that the crewman has difficulty 
overcoming them should moments be prescribed instead. 

Conclusions 

The simple model treated herein does exhibit the phenom- 
enon in question, namely that time constant, T, increases and rms 
response, $rmst decreases as appendage stiffness, w , is increased. 
The decrease occurs only over a range of w 2 ,  and the decrease is 
attributable to the form of crew excitation used, namely prescribed 
crew motions with a small parameter y. This form of crew excitation, 
which seems realistic for the problem at hand, is the one used in 
Ref. 1. 

2 

Results from the computer program used in Ref. 1 agree 
well with results derived herein for the simple model. 

102 2-PGS-mef 
e-s, 
P. ~ . - ~ m i t ~ i  
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APPENDIX 

Approximate Roots of a Lightly Damped Quartic Equation 

We desire approximate formulas for the roots of 

4 3 2 P x + P1X + P,X + p2x + PA = 0 * 4 = 0 

when p o,...,p4 are all positive, pop4<p2/4, 2 and when p1,p3 
are "small" compared to p ,p ,p 
condition). The approach is as follows: because of the 
lightly damped condition, the roots will be near the imaginary 

assuming that the roots of ( A - 1 )  are near the purely imaginary 
roots just found, compute real and imaginary perturbations by 
means of linear perturbation equations. 

(this is the lightly damped 0 2 4  

axis, so neglect p1 and p terms and find roots of p x 4 +p2x 2 +p4=O; 3 0 

When p =p = O  1 3  

x =  -p2+ v 2  p2-4p 0 4 = - h  P 2 

2P0 
Let the roots of (A-1) be 

x = f + i (h+g) 

2 where i = -1, and assume that ]fl<<lhl and Igl<<lhl. Sub- 
stitute (A-3) into (A-l), separate the resulting equation 
into equations in the real and imaginary parts, linearize 
in f and g ,  and make use of the identity 

(A-2) 

(A-3 1 

The results are 



A-2 

When p1 and p3 are  s m a l l  
2 

4pOh - 2p2 
2 T =  

P l h  - P3 

2 and h can be removed by u s e  of ( A - 2 ) :  

The system t i m e  c o n s t a n t  i s  t h e  larger of t h e s e  t w o  v a l u e s ,  
namely 

( A - 4 )  
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